真空鍍膜:真空涂層技術(shù)的發(fā)展:真空涂層技術(shù)起步時(shí)間不長,國際上在上世紀(jì)六十年代才出現(xiàn)將CVD(化學(xué)氣相沉積)技術(shù)應(yīng)用于硬質(zhì)合金刀具上。由于該技術(shù)需在高溫下進(jìn)行(工藝溫度高于1000oC),涂層種類單一,局限性很大,起初并未得到推廣。到了上世紀(jì)七十年代末,開始出現(xiàn)PVD(物理的氣相沉積)技術(shù),之后在短短的二、三十年間PVD涂層技術(shù)得到迅猛發(fā)展,究其原因:其在真空密封的腔體內(nèi)成膜,幾乎無任何環(huán)境污染問題,有利于環(huán)保;其能得到光亮、華貴的表面,在顏色上,成熟的有七彩色、銀色、透明色、金黃色、黑色、以及由金黃色到黑色之間的任何一種顏色,能夠滿足裝飾性的各種需要;可以輕松得到其他方法難以獲得的高硬度、高耐磨性的陶瓷涂層、復(fù)合涂層,應(yīng)用在工裝、模具上面,可以使壽命成倍提高,較好地實(shí)現(xiàn)了低成本、收益的效果;此外,PVD涂層技術(shù)具有低溫、高能兩個(gè)特點(diǎn),幾乎可以在任何基材上成膜,因此,應(yīng)用范圍十分廣闊,其發(fā)展神速也就不足為奇。真空鍍膜機(jī)電阻式蒸發(fā)鍍分為預(yù)熱段、預(yù)溶段、線性蒸發(fā)段三個(gè)步驟?;茨险婵斟兡すに嚵鞒?/p>
真空鍍膜:物理的氣相沉積技術(shù)是指在真空條件下采用物理方法將材料源(固體或液體)表面氣化成氣態(tài)原子或分子,或部分電離成離子,并通過低壓氣體(或等離子體)過程,在基體表面沉積具有某種特殊功能的薄膜的技術(shù),物理的氣相沉積是主要的表面處理技術(shù)之一。PVD(物理的氣相沉積)鍍膜技術(shù)主要分為三類:真空蒸發(fā)鍍膜、真空濺射鍍膜和真空離子鍍膜。物理的氣相沉積的主要方法有:真空蒸鍍、濺射鍍膜、電弧等離子體鍍、離子鍍膜和分子束外延等。相應(yīng)的真空鍍膜設(shè)備包括真空蒸發(fā)鍍膜機(jī)、真空濺射鍍膜機(jī)和真空離子鍍膜機(jī)。銅川納米涂層真空鍍膜真空鍍膜機(jī)的優(yōu)點(diǎn):其封口性能好,尤其包裝粉末狀產(chǎn)品時(shí),不會(huì)污染封口部分,保證了包裝的密封性能。
PECVD一般用到的氣體有硅烷、笑氣、氨氣等其他。這些氣體通過氣管進(jìn)入在反應(yīng)腔體,在射頻源的左右下,氣體被電離成活性基團(tuán)。活性基團(tuán)進(jìn)行化學(xué)反應(yīng),在低溫(300攝氏度左右)生長氧化硅或者氮化硅。氧化硅和氮化硅可用于半導(dǎo)體器件的絕緣層,可有效的進(jìn)行絕緣。PECVD生長氧化硅薄膜是一個(gè)比較復(fù)雜的過程,薄膜的沉積速率主要受到反應(yīng)氣體比例、RF功率、反應(yīng)室壓力、基片生長溫度等。在一定范圍內(nèi),提高硅烷與笑氣的比例,可提供氧化硅的沉積速率。在RF功率較低的時(shí)候,提升RF功率可提升薄膜的沉積速率,當(dāng)RF增加到一定值后,沉積速率隨RF增大而減少,然后趨于飽和。在一定的氣體總量條件下,沉積速率隨腔體壓力增大而增大。PECVD在低溫范圍內(nèi)(200-350℃),沉積速率會(huì)隨著基片溫度的升高而略微下降,但不是太明顯。
等離子體化學(xué)氣相沉積法,利用了等離子體的活性來促進(jìn)反應(yīng),使化學(xué)反應(yīng)能在較低的溫度下進(jìn)行。優(yōu)點(diǎn)是:反應(yīng)溫度降低,沉積速率較快,成膜質(zhì)量好,不容易破裂。缺點(diǎn)是:設(shè)備投資大、對氣管有特殊要求。PECVD,等離子體化學(xué)氣相沉積法是借助微波或射頻等使含有薄膜組成原子的氣體電離,使局部形成等離子體,而等離子體化學(xué)活性很強(qiáng),兩種或多種氣體很容易發(fā)生反應(yīng),在襯底上沉積出所期待的薄膜。為了使化學(xué)反應(yīng)能在較低的溫度下進(jìn)行,利用了等離子體的活性來促進(jìn)反應(yīng),因此,這種CVD稱為等離子體增強(qiáng)化學(xué)氣相沉積。真空鍍膜機(jī)、真空鍍膜設(shè)備爐門采用懸垂吊掛式平移結(jié)構(gòu),便于爐外料車與爐內(nèi)輥軸的對接傳遞,減少占地空間。
原子層沉積(atomiclayer deposition,ALD)技術(shù),亦稱原子層外延(atomiclayer epitaxy,ALE)技術(shù),是一種基于有序、表面自飽和反應(yīng)的化學(xué)氣相薄膜沉積技術(shù)。原子層沉積技術(shù)起源于上世紀(jì)六七十年代,由前蘇聯(lián)科學(xué)家Aleskovskii和Koltsov報(bào)道,隨后,基于電致發(fā)光薄膜平板顯示器對高質(zhì)量ZnS: Mn薄膜材料的需求,由芬蘭Suntalo博士發(fā)展并完善。然而,受限于其復(fù)雜的表面化學(xué)過程等因素,原子層沉積技術(shù)在開始并沒有取得較大發(fā)展,直到上世紀(jì)九十年代,隨著半導(dǎo)體工業(yè)的興起,對各種元器件尺寸,集成度等方面的要求越來越高,原子層沉積技術(shù)才迎來發(fā)展的黃金階段。進(jìn)入21世紀(jì),隨著適應(yīng)各種制備需求的商品化ALD儀器的研制成功,無論在基礎(chǔ)研究還是實(shí)際應(yīng)用方面,原子層沉積技術(shù)都受到人們越來越多的關(guān)注。真空濺鍍可根據(jù)基材和靶材的特性直接濺射不用涂底漆。佛山真空鍍膜涂料
真空鍍膜鍍的薄膜與基體結(jié)合強(qiáng)度好,薄膜牢固?;茨险婵斟兡すに嚵鞒?/p>
磁控濺射一般金屬鍍膜大都采用直流濺鍍,而不導(dǎo)電的陶磁材料則使用RF交流濺鍍,基本的原理是在真空中利用輝光放電(glowdischarge)將氬氣(Ar)離子撞擊靶材(target)表面,電漿中的陽離子會(huì)加速?zèng)_向作為被濺鍍材的負(fù)電極表面,這個(gè)沖擊將使靶材的物質(zhì)飛出而沉積在基板上形成薄膜。磁控濺射主要利用輝光放電(glowdischarge)將氬氣(Ar)離子撞擊靶材(target)表面,靶材的原子被彈出而堆積在基板表面形成薄膜。濺鍍薄膜的性質(zhì)、均勻度都比蒸鍍薄膜來的好,但是鍍膜速度卻比蒸鍍慢比較多。新型的濺鍍設(shè)備幾乎都使用強(qiáng)力磁鐵將電子成螺旋狀運(yùn)動(dòng)以加速靶材周圍的氬氣離子化,造成靶與氬氣離子間的撞擊機(jī)率增加,提高濺鍍速率。淮南真空鍍膜工藝流程