術(shù)語解讀
數(shù)據(jù)降維:
降維就是一種對高維度特征數(shù)據(jù)預處理方法。降維是將高維度的數(shù)據(jù)保留下**重要的一些特征,去除噪聲和不重要的特征,從而實現(xiàn)提升數(shù)據(jù)處理速度的目的。在實際的生產(chǎn)和應用中,降維在一定的信息損失范圍內(nèi),可以為我們節(jié)省大量的時間和成本。降維也成為應用非常***的數(shù)據(jù)預處理方法。
數(shù)據(jù)要求:
表達譜芯片或測序數(shù)據(jù)(已經(jīng)過預處理)
下游分析
得到PCA分析結(jié)果之后的分析有:
1.對組成主要成分的基因進行后續(xù)分析,探究該情況下關(guān)鍵基因表達情況
2.對組成不同主成分簇的基因進行后續(xù)分析,探究該情況下不同基因集的表達情況 檢測服務及數(shù)據(jù)分析助力取得2020年國自然面上十項、青年基金十八項。山東算法還原與開發(fā)數(shù)據(jù)科學售后服務
GeneInteraction基因互作:基因相互作用指miRNA、lncRNA、circRNA或其它RNA介導DNA轉(zhuǎn)錄,從而影響mRNA的表達過程。通俗意義上來說,基因互作關(guān)系指基于序列預測的靶基因?qū)?。miRNA通過與靶mRNA的結(jié)合,或促使mRNA降解,或阻礙其翻譯,從而***目的基因的表達。競爭性內(nèi)源RNA網(wǎng)絡是靶基因預測的研究深入,簡稱ceRNA網(wǎng)絡。通過進行ceRNA網(wǎng)絡的分析,我們能從一個更為宏觀的角度來解釋轉(zhuǎn)錄體如何構(gòu)建基因表達調(diào)控網(wǎng)絡,從而進一步挖掘基因在其中的調(diào)控機制。基本原理:miRNA主要通過與靶基因的非翻譯區(qū)(UTR)結(jié)合而發(fā)揮其作用,對miRNA和mRNA、lncRNA、circRNA結(jié)合進行的預測稱為靶基因預測。靶基因預測使用軟件根據(jù)miRNA和靶基因間的結(jié)合的規(guī)律預測結(jié)合基因?qū)?。在生物體內(nèi),miRNA可以通過與proteincoding特異性結(jié)合,影響相關(guān)基因的表達,從而參與調(diào)控細胞內(nèi)的各項功能。ceRNA具有miRNA結(jié)合位點,能后競爭性地結(jié)合miRNA,***miRNA對靶基因的調(diào)控。例如lncRNA與miRNA競爭性結(jié)合,影響miRNA調(diào)控mRNA的過程,**終導致的mRNA表達失調(diào)。我們使用基于序列預測的軟件對差異分析得到的miRNA與mRNA,lncRNA,circRNA進行靶點預測和ceRNA網(wǎng)絡分析。 北京臨床統(tǒng)計數(shù)據(jù)科學售后分析目前能夠?qū)映^50家實驗室。
GSVA算法接受的輸入為基因表達矩陣(經(jīng)過log2標準化的芯片數(shù)據(jù)或者RNA-seqcount數(shù)數(shù)據(jù))以及特定基因集。**步,算法會對表達數(shù)據(jù)進行核密度估計;第二部,基于**步的結(jié)果對樣本進行表達水平排序;第三步,對于每一個基因集進行類似K-S檢驗的秩統(tǒng)計量計算;第四步,獲取GSVA富集分數(shù)。**終輸出為以每個基因集對應每個樣本的數(shù)據(jù)矩陣。無監(jiān)督算法無監(jiān)督算法常常被用于數(shù)據(jù)挖掘,用于在大量無標簽數(shù)據(jù)中發(fā)現(xiàn)些什么。它的訓練數(shù)據(jù)是無標簽的,訓練目標是能對觀察值進行分類或區(qū)分等。核密度估計核密度估計(kerneldensityestimation)在概率論中用來估計未知的密度函數(shù),屬于非參數(shù)檢驗方法之一。數(shù)據(jù)要求1、特定感興趣的基因集(如信號通路,GO條目等),列出基因集中基因2、基因表達矩陣,為經(jīng)過log2標準化的芯片數(shù)據(jù)或者RNA-seqcount數(shù)數(shù)據(jù)(基因名形式與基因集對應)下游分析1、基因集(如信號通路)的生存分析2、基因集(如信號通路)的差異表達分析3、基因集。
術(shù)語解讀:
TME: Tumormicroenvironment
TMEscore: TMEsignature score(使用PCA算法計算得到,高意味著對病毒和干擾素免疫***和應答敏感。)
PCA:Principal component analysis
CIBERSORT:Cell type identification by estimating relative subset of known RNA transcripts
CYT:Cytolytic activity
EMT:Epithelial-mesenchymal-transition
CR: Completeresponse
PR: Partialresponse
PD:Progressive disease
TMB: Tumormutational burden
數(shù)據(jù)要求:
各細胞之間的相關(guān)關(guān)系、pvalue、聚類/分類結(jié)果、跟預后的關(guān)系表。 在基因組上同時展示突變位點和motif,為突變影響轉(zhuǎn)錄因子結(jié)合提供量化和可視化的證據(jù)。
Adonis(置換多元方差分析,分析不同分組或環(huán)境因子對樣品差異的解釋度):ADONIS置換多元方差分析(Permutationalmultivariateanalysisofvariance,PERMANOVA),又稱非參數(shù)多因素方差分析(nonparametricmultivariateanalysisofvariance)、或者ADONIS分析。使用PERMANOVA可分析不同分組因素對樣品差異的解釋度,并使用置換檢驗進行***性統(tǒng)計?;驹恚褐脫Q多元方差分析(PERMANOVA,Adonis)是一種基于F統(tǒng)計的方差分析,依據(jù)距離矩陣對總方差進行分解的非參數(shù)多元方差分析方法。基本步驟是基于OTU豐度表,計算樣本間樣本間Bray-curtis距離,然后adonis分析生成結(jié)果,繪圖展示。術(shù)語解讀:OTU:operationaltaxonomicunits,分類單元Df:自由度,其值=所比較的分組數(shù)量-1;SumsOfSqs:即Sumsofsquares,總方差,又稱離差平方和;MeanSqs:即Meansquares,均方(差);FModel:F檢驗值;R2:即Variation(R2),方差貢獻,表示不同分組對樣品差異的解釋度,即分組方差與總方差的比值,R2越大表示分組對差異的解釋度越高;Pr(>F):***性p值,小于***。數(shù)據(jù)要求:OTU豐度表或者樣本距離矩陣。 可對接各類公共數(shù)據(jù)庫,切入各類接口,并對公共數(shù)據(jù)庫進行大規(guī)模數(shù)據(jù)挖掘。成果發(fā)表指導數(shù)據(jù)科學服務
承擔各類項目超過400余項。山東算法還原與開發(fā)數(shù)據(jù)科學售后服務
CNV(拷貝數(shù)變異分析):CNV(copy-numbervariant)是指拷貝數(shù)目變異,也稱拷貝數(shù)目多態(tài)性(copy-numberpolymorphism,CNP),是一個大小介于1kb至3MB的DN**段的變異,在人類及動植物基因組中***分布,主要表現(xiàn)為亞顯微水平的缺失或重復。CNV是近年來基因組學的研究熱點,是許多人類疾?。ㄈ?*、遺傳性疾病、心血管疾病等)發(fā)***展的重要分子機制之一。CNV的分析多見于易于發(fā)生染色體結(jié)構(gòu)變異的**研究中,也可用于復雜的神經(jīng)精神疾病的病因?qū)W研究,如智力障礙、帕金森病和孤獨癥等,也可用于其他疾病的易感性分析,如銀屑病、克羅恩病和一些自身免疫系統(tǒng)疾病。CNV研究既可用于單個的病例分析,找到遺傳高度異質(zhì)性的個體致病的遺傳學基礎,如智力低下的病因診斷;也可用于大量的病例一對照分析,患病群體的常見CNV變異研究,還可用于**家系的研究,如疾病相關(guān)新發(fā)CNV的研究。基本原理目前主流的CNV檢驗方法有RNA-seq和SNPArray,已有研究表明使用轉(zhuǎn)錄組數(shù)據(jù)分析到的CNV情況和。CNV分析的**步為篩選somaticCNVs。對正常人來說,基因組應該是二倍體的,所以凡是測到非2倍體的地方都是CNV。但是CNV本身就是人群遺傳物質(zhì)多樣性的體現(xiàn),所以對**樣本來說。 山東算法還原與開發(fā)數(shù)據(jù)科學售后服務