隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產以及家用電器中得到了***的應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題。電機監(jiān)測系統(tǒng)選擇傳感器采集旋轉設備的溫度、振動數(shù)據,分析變化趨勢以判斷設備情況。南京旋轉機械監(jiān)測公司
基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據診斷需要,選擇有代表性的特征參量為該設備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數(shù)據處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換。紹興研發(fā)監(jiān)測數(shù)據監(jiān)測系統(tǒng)利用深度模型自動學習跨領域狀態(tài)監(jiān)測數(shù)據的可遷移故障特征, 并形成對故障發(fā)生模式的抽象描述信息。
針對刀具磨損狀態(tài)在實際生產加工過程中難以在線監(jiān)測這一問題,提出一種通過OPCUA通信技術獲取機床內部數(shù)據,對當前的刀具磨損狀態(tài)進行識別的方法。通過OPCUA采集機床內部實時數(shù)據并將其與實際加工情景緊密結合,能直接反映當前的加工狀態(tài)。將卷積神經網絡用于構建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現(xiàn)都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過OPCUA獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學習,不斷提升模型的精度和預測效果。
作為工業(yè)領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據預處理、工業(yè)機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據的支撐,數(shù)據采集、歸納、分析是一個漫長的過程。以電機預測性維護理念為**的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機維護人員為**的電機運維來說,都還有很遠的一段距離!
電機故障監(jiān)測和診斷可根據當前檢測的運行狀態(tài)對可能發(fā)生的故障進行預判。
刀具監(jiān)測管理系統(tǒng)是我們基于精密加工行業(yè)特征,結合加工中心、車床等機械加工過程,打造的一款刀具狀態(tài)監(jiān)測和壽命預測分析系統(tǒng),通過采集主軸電流(負載)信號、位置信號、速度信號等30維度+數(shù)據信號,結合大數(shù)據流式處理、自然語言處理等自學習處理算法和行業(yè)多年經驗數(shù)據沉淀,構建的一套完整的刀具壽命預測和狀態(tài)監(jiān)控管理系統(tǒng),能夠實現(xiàn)100%斷刀和崩刃監(jiān)控,磨損監(jiān)控識別率達到99%以上,同時,提供基于刀具狀態(tài)監(jiān)測和壽命預測的異常停機控制模塊,避免因刀具異常導致的產品質量損失和異常撞機事故,幫助用戶節(jié)約刀具成本30%以上,100%避免刀具異常帶來的產品質量損失,為用戶提供無憂機加工過程管理!隨著工業(yè)互聯(lián)網的落地,大型旋轉類設備振動監(jiān)測的重要性日益加強。南京研發(fā)監(jiān)測
大型旋轉機械振動狀態(tài)在線監(jiān)測系統(tǒng)監(jiān)測對象涵蓋汽輪機、燃氣輪機、發(fā)電機、泵群、風機等大型旋轉設備。南京旋轉機械監(jiān)測公司
手機微電機在線自動分揀系統(tǒng)。該系統(tǒng)精細高效的采集微型馬達工作時的聲音信號,然后通過聲音分析算法進行質量特征值的提取,能夠與現(xiàn)有的人工檢測進行比對和分析,將以往人工檢測形成的數(shù)據集標簽,結合深度學習算法進行良品與次品的分類。并且由于微電機每天的生產數(shù)量都在幾千萬臺,很適合使用深度學習等機器學習方法,因此通過機器學習方法,對大量電機特征數(shù)據(特別是故障電機)進行分析處理,對測試電機進行良品檢測和分類,準確率達到95%以上。南京旋轉機械監(jiān)測公司
上海盈蓓德智能科技有限公司公司是一家專門從事智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)產品的生產和銷售,是一家其他型企業(yè),公司成立于2019-01-02,位于上海市閔行區(qū)新龍路1333號28幢328室。多年來為國內各行業(yè)用戶提供各種產品支持。在孜孜不倦的奮斗下,公司產品業(yè)務越來越廣。目前主要經營有智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等產品,并多次以電工電氣行業(yè)標準、客戶需求定制多款多元化的產品。我們以客戶的需求為基礎,在產品設計和研發(fā)上面苦下功夫,一份份的不懈努力和付出,打造了盈蓓德,西門子產品。我們從用戶角度,對每一款產品進行多方面分析,對每一款產品都精心設計、精心制作和嚴格檢驗。上海盈蓓德智能科技有限公司嚴格規(guī)范智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)產品管理流程,確保公司產品質量的可控可靠。公司擁有銷售/售后服務團隊,分工明細,服務貼心,為廣大用戶提供滿意的服務。