微型化雙光子熒光顯微成像改變了在自由活動(dòng)動(dòng)物中觀察細(xì)胞和亞細(xì)胞結(jié)構(gòu)的方式,可用于在動(dòng)物覓食、哺乳、跳臺(tái)、打斗、嬉戲、睡眠等自然行為條件下,或者在學(xué)習(xí)前、學(xué)習(xí)中和學(xué)習(xí)后,長(zhǎng)時(shí)程觀察神經(jīng)突觸、神經(jīng)元、神經(jīng)網(wǎng)絡(luò)、遠(yuǎn)程連接的腦區(qū)等多尺度、多層次動(dòng)態(tài)變化。該成果在2016年底美國(guó)神經(jīng)科學(xué)年會(huì)、2017年5月冷泉港亞洲腦科學(xué)專(zhuān)題會(huì)議上報(bào)告后,得到包括多位諾貝爾獎(jiǎng)獲得者在內(nèi)的國(guó)內(nèi)外神經(jīng)科學(xué)家的高度贊譽(yù)。冷泉港亞洲腦科學(xué)專(zhuān)題會(huì)議、美國(guó)明顯神經(jīng)科學(xué)家加州大學(xué)洛杉磯分校的Alcino J Silva教授在評(píng)述中寫(xiě)道,“從任何一個(gè)標(biāo)準(zhǔn)來(lái)看,這款顯微鏡都了一項(xiàng)重大技術(shù)發(fā)明,必將改變我們?cè)谧杂苫顒?dòng)動(dòng)物中觀察細(xì)胞和亞細(xì)胞結(jié)構(gòu)的方式。它所開(kāi)啟的大門(mén),甚至超越了神經(jīng)元和樹(shù)突成像。系統(tǒng)神經(jīng)生物學(xué)正在進(jìn)入一個(gè)新的時(shí)代,即通過(guò)對(duì)細(xì)胞群體中可辨識(shí)的細(xì)胞和亞細(xì)胞結(jié)構(gòu)的復(fù)雜生物學(xué)事件進(jìn)行成像觀測(cè),從而更加深刻地理解進(jìn)化所造就的大腦環(huán)路實(shí)現(xiàn)復(fù)雜行為的重要工程學(xué)原理。毫無(wú)疑問(wèn),這項(xiàng)非凡的發(fā)明讓我們向著這一目標(biāo)邁進(jìn)了一步。”雙光子顯微鏡角膜成像。國(guó)外investigator雙光子顯微鏡熒光探測(cè)
在該自適應(yīng)光學(xué)雙光子熒光顯微鏡中,她們將空間光位相調(diào)制器光學(xué)共軛到顯微物鏡的后焦平面,通過(guò)位相調(diào)制器將入射光分成若干子區(qū)域,每一塊子區(qū)域的波前都可以被控制。同時(shí),她們用數(shù)字微陣列光處理器,以不同的頻率同時(shí)調(diào)制其中一半子區(qū)域的入射光強(qiáng)度,以另一半子區(qū)域作為“參考波前”。來(lái)自所有子區(qū)域光束會(huì)在焦點(diǎn)處會(huì)聚干涉,通過(guò)監(jiān)測(cè)焦點(diǎn)激發(fā)的雙光子信號(hào)隨時(shí)間的變化情況,并進(jìn)行傅里葉變換分析,可以“分解”得到被調(diào)制的每一塊子區(qū)域的“光線(xiàn)”的貢獻(xiàn)信息,從而可以實(shí)現(xiàn)對(duì)一半子區(qū)域波前的并行測(cè)量。對(duì)另一半子區(qū)域重復(fù)這一測(cè)量過(guò)程,從而獲得整個(gè)入射波前的信息并進(jìn)行校正。該方法耗時(shí)很短,通常約1~3分鐘左右即可完成像差的測(cè)量和校正,無(wú)需復(fù)雜的計(jì)算,適用于任何標(biāo)記密度和標(biāo)記類(lèi)型的樣品。更重要的是,得到的像差校正圖案可以用于提高較大視場(chǎng)范圍內(nèi)的成像質(zhì)量。該方法無(wú)疑為在體研究小鼠大腦皮層深層區(qū)域的生物、醫(yī)學(xué)問(wèn)題提供了可行性方案。熒光激光雙光子顯微鏡磷光壽命計(jì)數(shù)雙光子顯微鏡使用的是可見(jiàn)光或近紅外光作為光源;
實(shí)驗(yàn)從理論和實(shí)驗(yàn)上評(píng)估了多焦點(diǎn)v2PE顯微鏡的空間分辨率,并與單光子熒光顯微鏡進(jìn)行了對(duì)比,實(shí)驗(yàn)中v2PE的激發(fā)波長(zhǎng)為521 nm,使用放大倍率為100倍的物鏡,尺寸為0.6AU,對(duì)直徑100nm的熒光顆粒進(jìn)行了測(cè)試性成像,共獲得40幅不同采樣深度的圖像合成為三維圖像。圖像在橫向和縱向的半高全寬分別是177 nm和297 nm,這些值接近顯微鏡的理論分辨率。后續(xù)還利用軟件模擬從理論上研究了多焦點(diǎn)v2PE顯微技術(shù)的空間分辨率,模擬計(jì)算顯示v2PE點(diǎn)擴(kuò)散函數(shù)(PSF)的橫向半高寬與單光子激發(fā)熒光(1PE)相似,軸向的半高寬較1PE減少,可以提高空間分辨率。
1990年初,當(dāng)WinfriedDenk剛從康奈爾大學(xué)博士畢業(yè)準(zhǔn)備前往瑞士讀博后時(shí),他看了一本關(guān)于激光掃描顯微鏡的書(shū),從中了解到非線(xiàn)性光學(xué)效應(yīng)——強(qiáng)光和物質(zhì)的相互作用。當(dāng)時(shí),Denk有同事研究生物樣品中的鈣離子但苦于沒(méi)有強(qiáng)大的紫外激光器和光學(xué)元件,于是他就想到如果使用雙光子吸收就能夠繞開(kāi)紫外,換言之,與其通過(guò)一個(gè)紫外光子激發(fā)標(biāo)記的鈣離子,通過(guò)兩個(gè)雙倍波長(zhǎng)的可見(jiàn)光光子也能激發(fā)相同的熒光。有了想法后馬上實(shí)驗(yàn)。借了一套染料飛秒激光器,Denk聯(lián)合他的導(dǎo)師WattWebb及其博士生JamesStrickler只用六個(gè)小時(shí)就完成了實(shí)驗(yàn)搭建,采集數(shù)據(jù)則用了兩到三天,于是一篇里程碑式的文章就此誕生了。用雙光子顯微鏡看看你的皮膚有沒(méi)有重?zé)ㄐ律?/p>
相比普通的顯微鏡電子顯微鏡可以觀察尺度更小的東西,冷凍電鏡更是可以觀察有活性的生物大分子,而雙光子顯微鏡有什么優(yōu)勢(shì)呢?它能做到什么普通光學(xué)顯微鏡做不到的事情嗎?原來(lái),雙光子顯微鏡可以精確穿透較厚標(biāo)本進(jìn)行定點(diǎn)、***觀察!由于電磁波的波長(zhǎng)越短,粒子性越強(qiáng),受散射影響也就越大。雙光子顯微鏡將激發(fā)光源改為長(zhǎng)波長(zhǎng)激光,在增加了激光的穿透性的同時(shí)還減少了對(duì)細(xì)胞的毒性。除此之外,因?yàn)橹挥形镧R焦點(diǎn)處能發(fā)生雙光子激發(fā)效應(yīng),所以?huà)呙璧木_度極高,也能提高激發(fā)光效率,減少被掃描點(diǎn)之外的熒光物質(zhì)消耗。優(yōu)勢(shì)來(lái)源于其雙光子光源的非線(xiàn)性光學(xué)效應(yīng)。國(guó)內(nèi)investigator雙光子顯微鏡聯(lián)系方式
雙光子顯微鏡的原理是什么?國(guó)外investigator雙光子顯微鏡熒光探測(cè)
Winfried Denk較初使用的光源是染料飛秒激光器(100 fs脈寬、630 nm可見(jiàn)光波長(zhǎng))。雖然染料激光器對(duì)于實(shí)驗(yàn)室演示尚可,但是使用很不方便所以遠(yuǎn)未實(shí)現(xiàn)商用。很快雙光子顯微鏡的標(biāo)配光源就變成了飛秒鈦寶石激光器。除了固態(tài)光源優(yōu)勢(shì),鈦寶石激光器還具有較寬的近紅外波長(zhǎng)調(diào)諧范圍,而近紅外相比可見(jiàn)光穿透更深,對(duì)生物樣品損傷更小。下圖是Thorlabs的雙光子和三光子顯微鏡配置,鈦寶石飛秒可調(diào)諧激光器位于平臺(tái)較左邊??茖W(xué)家正在從雙光子轉(zhuǎn)向三光子顯微鏡。1996年,Chris Xu在康奈爾大學(xué)(Denk同導(dǎo)師實(shí)驗(yàn)室)讀博期間發(fā)明了三光子顯微鏡,如果雙光子吸收可行,那么三光子看起來(lái)也是自然的發(fā)展方向。三光子成像使用更長(zhǎng)的波長(zhǎng),大約在1.3和1.7微米,其成像深度也比雙光子更深,目前記錄約為2.2毫米,人類(lèi)大腦皮層厚約4毫米。相比雙光子顯微鏡,三光子還要求以較低重頻使用更強(qiáng)和更短的激光脈沖,而傳統(tǒng)的鈦寶石激光器難以達(dá)到這些要求,但是對(duì)于摻鐿光纖飛秒光參量放大器則非常容易,比如我們的Y-Fi光參量放大器(OPA)。國(guó)外investigator雙光子顯微鏡熒光探測(cè)