FT-NMT03納米力學測試系統(tǒng)可以配合SEM/FIB原位精確直接地測量納米纖維的力學特性。微力傳感器加載微力,納米力學測試結(jié)合高分辨位置編碼器可以對納米纖維進行拉伸、循環(huán)、蠕變、斷裂等形變測試。力-形變(應(yīng)力-應(yīng)變)曲線可以定量的表征納米纖維的材料特性。此外,納米力學測試結(jié)合樣品架電連接,可以定量表征電-機械性質(zhì)。位置穩(wěn)定性,納米力學測試對于納米纖維的精確拉伸測試,納米力學測試系統(tǒng)的位移是測試不穩(wěn)定性的主要來源。圖2展示了FT-NMT03納米力學測試系統(tǒng)位移的統(tǒng)計學評價,從中可以找到每一個測試間隔內(nèi)位移導(dǎo)致的不確定性,例如100s內(nèi)為450pm,意思是65%(或95%)的概率,納米力學測試系統(tǒng)在100s的時間間隔內(nèi)的位移穩(wěn)定性小于±450pm(或±900pm)。納米力學測試可以幫助研究人員了解納米材料的力學響應(yīng)機制,從而推動納米科學的發(fā)展。四川工業(yè)納米力學測試廠家供應(yīng)
隨著納米技術(shù)的迅速發(fā)展,對薄膜、納米材料的力學性質(zhì)的測量成為了一個重要的課題,然而由于尺寸的限制,傳統(tǒng)的拉伸試驗等力學測試方法很難在納米尺度下得到準確的結(jié)果。而原位納米力學測量技術(shù)的出現(xiàn),為解決納米尺度下材料力學性質(zhì)的測試問題提供了新的思路和手段。原位納米壓痕技術(shù),原位納米壓痕技術(shù)是一種應(yīng)用比較普遍的力學測試方法,其基本原理是用尖頭壓在待測材料表面,通過測量壓頭的形變等參數(shù)來推算出待測材料的力學性質(zhì)。由于其具有樣品尺寸、壓頭設(shè)計等方面的優(yōu)點,原位納米壓痕技術(shù)已經(jīng)被普遍應(yīng)用于納米材料力學測試領(lǐng)域。湖北汽車納米力學測試設(shè)備納米力學測試在生物醫(yī)學領(lǐng)域,助力研究細胞力學行為,揭示疾病發(fā)生機制。
Berkovich壓頭是納米壓痕硬度計中較常用的。它可以加工得很尖,而且?guī)缀涡螤钤诤苄〕叨葍?nèi)保持自相似,適合于小尺度的壓痕實驗。目前,該類壓頭的加工水平:端部半徑50nm,典型值約40nm,中心線和面的夾角精度為J=0.025°。在納米壓痕硬度測量中,Berkovich壓頭是一種理想的壓頭。優(yōu)點包括:易獲得好的加工質(zhì)量,很小載荷就能產(chǎn)生塑性,能減小摩擦的影響。Cube-corner壓頭因其三個面相互垂直,像立方體的一個角,故取此名稱。壓頭越尖,就會在接觸區(qū)內(nèi)產(chǎn)生理想的應(yīng)力和應(yīng)變。目前,該種壓頭主要用于斷裂韌性(fracture toughness)的研究。它能在脆性材料的壓痕周圍產(chǎn)生很小的規(guī)則裂紋,這樣的裂紋能在相當小的范圍內(nèi)用來估計斷裂韌性。錐形壓頭圓錐具有尖的自相似幾何形狀,從模型角度常利用它的軸對稱特性,納米壓痕硬度的許多模型均基于圓錐壓痕。由于難以加工出尖的圓錐金剛石壓頭,它在小尺度實驗中很少使用。
英國:國家物理研究所對各種納米測量儀器與被測對象之間的幾何與物理間的相互作用進行了詳盡的研究,繪制了各種納米測量儀器測量范圍的理論框架,其研制的微形貌納米測量儀器測量范圍是0.01n m~3n m和0.3n m~100n m。Warwick大學的Chetwynd博士利用X光干涉儀對長度標準用的波長進行細分研究,他利用薄硅片分解和重組X光光束來分析干涉圖形,從干涉儀中提取的干涉條紋與硅晶格有相等的間距,該間距接近0.2nm,他依此作為校正精密位移傳感器的一種亞納米尺度。Queensgate儀器公司設(shè)計了一套納米定位裝置,它通過壓電驅(qū)動元件和電容位置傳感器相結(jié)合的控制裝置達到納米級的分辨率和定位精度。解決方案之一:采用新型納米材料,提高力學性能,拓寬應(yīng)用范圍。
較大壓痕深度1.5 μ m時的試驗結(jié)果,其中納米硬度平均值為0.46GPa,而用傳統(tǒng)硬度計算方法得到的硬度平均值為0.580GPa,這說明傳統(tǒng)硬度計算方法在微納米硬度測量時誤差較大,其原因就是在微納米硬度測量時,材料變形的彈性恢復(fù)造成殘余壓痕面積較小,傳統(tǒng)方法使得計算結(jié)果產(chǎn)生了偏差,不能正確反映材料的硬度值。圖片通過對不同載荷下的納米硬度測量值進行比較發(fā)現(xiàn),單晶鋁的納米硬度值并不是恒定的, 而是在一定范圍內(nèi)隨著載荷(壓頭位移)的降低而逐漸增大,也就是存在壓痕尺寸效應(yīng)現(xiàn)象。圖3反映了納米硬度隨壓痕深度的變化。較大壓痕深度1μm時單晶鋁彈性模量與壓痕深度的關(guān)系。此外,納米硬度儀還可以輸出接觸剛、實時載荷等隨壓頭位移的變化曲線,試驗者可以從中獲得豐富的信息。在進行納米力學測試時,需要特別注意樣品的制備和處理過程,以避免引入誤差。湖北汽車納米力學測試設(shè)備
利用納米力學測試,可以對納米材料的彈性形變和塑性形變進行精細分析。四川工業(yè)納米力學測試廠家供應(yīng)
譜學技術(shù)微納米材料的化學成分分析主要依賴于各種譜學技術(shù),包括紫外-可見光譜紅外光譜、x射線熒光光譜、拉曼光譜、俄歇電子能譜、x射線光電子能譜等。另有一類譜儀是基于材料受激發(fā)的發(fā)射譜,是專為研究品體缺陷附近的原子排列狀態(tài)而設(shè)計的,如核磁共振儀、電子自旋共振譜儀、穆斯堡爾譜儀、正電子湮滅等等。熱分析技術(shù),納米材料的熱分析主要是指差熱分析、示差掃描量熱法以及熱重分析。三種方法常常相互結(jié)合,并與其他方法結(jié)合用于研究微納米材料或納米粒子的一些特 征:(1)表面成鍵或非成鍵有機基團或其他物質(zhì)的存在與否、含量多少、熱失重溫度等(2)表面吸附能力的強弱與粒徑的關(guān)系(3)升溫過程中粒徑變化(4)升溫過程中的相轉(zhuǎn)變情況及晶化過程。四川工業(yè)納米力學測試廠家供應(yīng)