AlN陶瓷金屬化的方法主要有:薄膜金屬化(如Ti/Pd/Au)、厚膜金屬化(低溫金屬化、高溫金屬化)、化學鍍金屬化(如Ni)、直接覆銅法(DBC)及激光金屬化。薄膜金屬化法采用濺射鍍膜等真空鍍膜法使膜材料和基板結合在一起,通常在多層結構基板中,基板內部金屬和表層金屬不盡相同,陶瓷基板相接觸的薄膜金屬應該具有反應性好、與基板結合力強的特性,表面金屬層多選擇電導率高、不易氧化的金屬。由于是氣相沉積,原則上任何金屬都可以成膜,任何基板都可以金屬化,而且沉積的金屬層均勻,結合強度高。但薄膜金屬化需要后續(xù)圖形化工藝實現(xiàn)金屬引線的圖形制備,成本較高。氮化鋁(AIN)是AI-N二元系中穩(wěn)定的相,它具有共價鍵、六方纖鋅礦結構。單晶氧化鋁商家
氮化鋁選用高純度且為微粉的“氮化鋁粉末”,一般而言氧質量含量在1.2%以下,碳質量含量為0.04%以下,F(xiàn)e含量為30ppm以下,Si含量為60ppm以下。氮化鋁粉體的很大粒徑很好控制在20μm以下的氮化鋁粉末。此處,“氧”基本上屬于雜質,但有防止過分煅燒的作用,因此為了防止煅燒導致的煅燒體強度下降優(yōu)先選用氧質量含量在0.7%以上的氮化鋁粉末。此外,在原料中常含有“煅燒助劑”,大多使用稀土金屬化合物、堿土金屬化合物、過渡金屬化合物等。例如可選用氧化釔或氧化鋁等,這些煅燒助劑與氮化鋁粉體形成復合的氧化物液相,該液相帶來煅燒體的高密度化,同時,提取氮化鋁晶粒中屬于雜質的氧,以結晶晶界的氧化物進行偏析,從而使氮化鋁基板的導熱率提高。大連耐溫氧化鋁品牌氮化鋁的熱導率主要由晶體缺陷和聲子自身對聲子散射控制。
在氮化鋁一系列重要的性質中,很為明顯的是高的熱導率。關于氮化鋁的導熱機理,國內外已做了大量的研究,并已形成了較為完善的理論體系。主要機理為:通過點陣或晶格振動,即借助晶格波或熱波進行熱的傳遞。量子力學的研究結果告訴我們,晶格波可以作為一種粒子——聲子的運動來處理。熱波同樣具有波粒二象性。載熱聲子通過結構基元(原子、離子或分子)間進行相互制約、相互協(xié)調的振動來實現(xiàn)熱的傳遞。如果晶體為具有完全理想結構的非彈性體,則熱可以自由的由晶體的熱端不受任何干擾和散射向冷端傳遞,熱導率可以達到很高的數(shù)值。其熱導率主要由晶體缺陷和聲子自身對聲子散射控制。
AlN自擴散系數(shù)小難以燒結,一般采用添加堿土金屬化合物及稀土鑭系化合物,通過液相燒結實現(xiàn)燒結致密化。燒結助劑能在燒結初期和中期明顯促進AlN陶瓷燒結,并且在燒結的后期從陶瓷材料中部分揮發(fā),從而制備純度及致密化程度都較高的AlN陶瓷材料及制品。在此過程中,助燒劑的種類、添加方式、添加量等均會對AlN陶瓷材料及制品的結構與性能產生明顯程度的影響。選擇AlN陶瓷燒結助劑應遵循以下原則:能在較低的溫度下與AlN顆粒表面的氧化鋁發(fā)生共熔,產生液相,這樣才能降低燒結溫度;產生的液相對AlN顆粒有良好的浸潤性,才能有效起到燒結助劑作用;燒結助劑與氧化鋁有較強的結合能力,以除去雜質氧,凈化AlN晶界;液相的流動性好,在燒結后期AlN晶粒生長過程中向三角晶界流動,而不至于形成AlN晶粒間的熱阻層;燒結助劑很好不與AlN發(fā)生反應,否則既容易產生晶格缺陷,又難于形成多面體形態(tài)的AlN完整晶形。提高氮化鋁陶瓷熱導率的途徑:加入適當?shù)臒Y助劑,可促進氮化鋁陶瓷致密化。
陶瓷線路板的耐熱循環(huán)性能是其可靠性關鍵參數(shù)之一。本文對陶瓷基板在反復周期性加熱過程中發(fā)生的變形情況進行了研究。通過實驗發(fā)現(xiàn),陶瓷覆銅板在周期性加熱過程中,存在類似金屬材料在周期載荷作用下出現(xiàn)的棘輪效應和包辛格效應。結合ANSYS有限元計算結果,可以推斷,陶瓷線路板的失效開裂與金屬層的塑性變形或位錯運動直接相關。另外,活性金屬釬焊陶瓷基板的結構穩(wěn)定性優(yōu)于直接覆銅陶瓷基板。隨著功率器件工作電壓、電流的增加和芯片尺寸不斷減小,芯片功率密度急劇增加,對芯片的散熱封裝的可靠性提出了更高挑戰(zhàn)。傳統(tǒng)柔性基板或金屬基板已滿足不了第三代半導體模塊高功率、高散熱的要求,陶瓷基板具有良好的導熱性、耐熱性、絕緣性、低熱膨脹系數(shù),是功率電子器件中關鍵基礎材料。陶瓷基板由金屬線路層和陶瓷層組成,由于陶瓷和金屬之間存在較大的熱膨脹差異,使用過程中產生的熱應力會造成基板開裂失效,因此,對陶瓷基板耐熱循環(huán)可靠性研究具有重要意義。氮化鋁的應用:應用于襯底材料,AlN晶體是GaN、AlGaN以及AlN外延材料的理想襯底。麗水高導熱氮化鋁價格
氮化鋁陶瓷具有高熱導率、好的抗熱沖擊性、高溫下依然擁有良好的力學性能。單晶氧化鋁商家
提高氮化鋁陶瓷熱導率的途徑:選擇合適的燒結工藝,致密度對氮化鋁陶瓷的熱導率有重要影響,致密度較低的氮化鋁陶瓷很難有較高的熱導率,因此必須選擇合適的燒結工藝實現(xiàn)氮化鋁陶瓷的致密化。常壓燒結:常壓燒結的燒結溫度通常為1600℃至2000℃,當添加了Y2O3燒結助劑后,氮化鋁粉會產生液相燒結,燒結溫度一般在1700℃至1900℃,特別是1800℃很常用,保溫時間為2h。燒結溫度還要受到氮化鋁粉粒度、添加劑含量及種類等的影響。熱壓溫度相對能低一些,一般是在1500℃至1700℃,保溫時間為0.5h,施加的壓力為20MPa左右。在1500℃至1800℃范圍內,提高氮化鋁燒結溫度通常會明顯提高氮化鋁燒結體的導熱率和致密度,特別是在常壓燒結時,這種影響更為明顯。單晶氧化鋁商家